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Abstract

The prevalence of obesity has grown to an alarming level of at least 300 million people worldwide. Additionally, a diabetes epidemic is

underway, with an estimate of 217 million people with diabetes worldwide. There are many links between excessive body weight and type 2

diabetes, and one common and fundamental cause of both epidemics is an unhealthy diet. Research to identify and promote diets that protect

individuals from obesity and type 2 diabetes is urgently needed. The Mediterranean diet, a concept developed in the 1950s, refers to dietary

habits of individuals from the Mediterranean basin. The Mediterranean diet is an eating pattern that successfully combines pleasant taste and

positive health effects. The Mediterranean diet does not stand for a homogenous and exclusive model among the Mediterranean basin

population but rather represents a set of healthy dietary habits, including high consumption of vegetables and fresh fruits and the use of olive

oil as the main source of fat. Evidence from epidemiological studies supports a protective effect of this dietary pattern on weight gain and the

development of type 2 diabetes. Several mechanistic explanations link characteristic components of the Mediterranean diet with obesity and

type 2 diabetes. This review will discuss potential mechanisms by which the Mediterranean diet protects individuals from both diseases.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The worldwide obesity epidemic seems to be unstoppa-

ble in spite of considerable efforts that have been made to

combat this disease [1]. At present, more than 300 million

people worldwide are obese [body mass index (BMI) of

30 kg/m2 or higher]. The prevalence of obesity steadily

increased over the past four decades in the United States [2],

from around 13% to 30% or nearly one third of American

adults. In many European countries, a similar trend can be

observed, although the absolute level of obesity prevalence

has not yet reached the U.S. level [3–9].

The increasing trend in obesity is accompanied by a

growing incidence of diabetes [10,11]. Long considered a

disease of minor significance, in the 21st century, diabetes is

one of the main threats to human health [12]. Type 2

diabetes, formerly called non-insulin-dependent diabetes

mellitus or adult-onset diabetes, accounts for most cases of

diabetes worldwide. In 2000, an estimated 150 million
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individuals worldwide are suffering from diabetes; this count

is likely to double by 2025 [13]. The close relationship

between obesity and diabetes has led to the adoption of the

term diabesity [14].

The fact that the incidence of obesity and type 2

diabetes has so recently and drastically increased points to

changes in lifestyle. The loss of traditional dietary habits,

increasing consumption of energy-dense foods and increas-

ing portion sizes, together with less physical activity at

work and/or during leisure time, are strongly associated

with the explosive increase of these diseases. However,

lifestyle factors such as diet and physical activity are

modifiable and disease manifestation from these factors is

largely preventable.

During the last few years, a great effort has been made to

examine the relationship between health and overall diet.

Pattern analysis examines the effects of diet rather than

focusing on individual nutrients or foods. Conceptually,

dietary patterns represent a broader picture of food and

nutrient consumption and may therefore be more predictive

of disease risk. Epidemiological evidence suggests that

several dietary patterns have been favorably associated with
chemistry 18 (2007) 149–160
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the prevention of obesity and type 2 diabetes [15–18]. A

common characteristic of these dietary patterns is their

abundant plant food content.

The Mediterranean diet was first described in the 1960s

by Angel Keys, based on his observation of food habits of

some populations in the Mediterranean region [19]. The

Mediterranean diet observed by Keys was based on a large

variety of foods, mostly of vegetable (and not of animal)

origin. This dietary pattern, however, varies among regions

of the Mediterranean basin. The whole fat content, for

example, may vary from less than 30% to about 40%.

Nevertheless, a high consumption of foods of vegetable

origin, such as fruits, vegetables, legumes, nuts, cereals

and olive oil, and, on the other hand, a low consumption

of meat and sausages could be considered important

characteristics of this dietary pattern. Although the

Mediterranean diet has long been celebrated for its impact

on cardiovascular health [20], mounting epidemiological

evidence indicates a favorable effect on obesity and

diabetes [21–27] as well. However, there is little dis-

cussion in the literature that explains these healthy effects

of the Mediterranean diet, particularly for obesity. There-

fore, the objective of the present review was to discuss

potential mechanisms by which the Mediterranean diet

prevents obesity and diabetes.
2. Epidemiological evidence of the preventive role of the

Mediterranean diet on obesity and type 2 diabetes

Few epidemiological studies have addressed the question

of whether the Mediterranean diet produces favorable

effects in preventing obesity and diabetes. Recently, we

reported an inverse association of BMI and the Mediterra-

nean diet in a representative Mediterranean Spanish

population [23]. Furthermore, we found a reduced risk of

being obese with higher adherence to the Mediterranean diet

pattern. Interestingly, this was independent of whether olive

oil is included in the Mediterranean diet or not. However,

Trichopoulou et al. [22] observed no essential relationship

between adherence to the Mediterranean diet and BMI in a

large general Greek population sample. Furthermore, a

longitudinal analysis of Spanish men and women showed

that subjects with a high adherence to the Mediterranean

diet have lower crude increments of weight during 2 years

of follow-up [21].

Following a Mediterranean-style diet in a randomized

intervention trial over 54 months improved endothelial

function and significantly reduced waist circumference,

plasma glucose, serum insulin and homeostasis model

assessment (HOMA) score in metabolic syndrome patients

[25]. Toobert et al. [26] examined in a randomized clinical

trial the effectiveness of a Mediterranean lifestyle program

(low-saturated-fat diet, stress management training, exercise

and group support, together with smoking cessation) in

reducing cardiovascular risk factors in postmenopausal

women with type 2 diabetes. They found greater improve-
ments in HbA1c, BMI and lipid profile in the intervention

group as compared with the control group. A recently

published study showed a decrease in several cardiovascular

risk factors such as glycemia, insulinemia or HOMA,

among others, after following a Mediterranean-type diet

for 3 months [27]. Spanish investigators showed an

improvement in glucose metabolism after administration

of a Mediterranean-type diet [24]. These studies point to a

favorable effect of Mediterranean-type diets on weight

maintenance and risk factors associated with diabetes

outcome, although they do not specify the mechanisms by

which it occurs.
3. Mechanisms inversely linking the Mediterranean diet

to excessive weight

3.1. Effect of the Mediterranean diet on satiation and satiety

3.1.1. Dietary fiber

There is no doubt that an imbalance between energy

expenditure and energy consumption causes weight gain.

Too much energy-dense food consumption and too little

physical activity worsen the obesity epidemic. Regulation of

food intake is a complex process, influenced not only by

food intake but also by various environmental and

psychological factors [28,29]. The effects of food intake

on hunger, satiation (the satisfaction of appetite that

develops during the course of eating and eventually results

in the cessation of eating) and satiety (the sensation that

determines the intermeal period of fasting) are of particular

importance for energy consumption.

Overconsumption is facilitated through palatable energy-

dense food that disrupts appetite regulation [30]. According

to the definition of the Institute of Medicine of the National

Academies, dietary fiber consists of bnon-digestible carbo-

hydrates and lignin that are intrinsic and intact in plants.Q
In general, dietary fiber may help regulate body weight

through its intrinsic effects and hormonal responses.

Dietary fiber has long been regarded as a satiation and

satiety factor and has long been linked to calorie intake

[31,32]. Experimental studies showed that high fiber intake

increases satiety or reduces hunger in comparison to low

fiber intake, control or placebo treatment [31]. Addition-

ally, the majority of studies investigating the effect of high-

fiber diets on energy intake and weight loss reported a

reduction in both. Diets rich in plant foods, such as the

Mediterranean diet, provide a high amount of, as well as a

variety of, both soluble and insoluble dietary fiber.

There are several mechanisms by which dietary fiber

may exert its effects on satiation and satiety. Foods rich in

dietary fiber might promote satiation through prolonged

mastication. Experimental animal studies showed that

mastication is important for energy metabolism [33,34].

Mastication leads to an activation of hypothalamic hista-

mine neurons. H1 receptors located in the satiety centers of

the ventromedial hypothalamus and the paraventricular
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nucleus are suppressed through histamine neuron activa-

tion. This affects eating volume and eating speed [34].

Furthermore, histamine neuron activation accelerates

lipolysis, particularly in visceral adipocyte, and increases

uncoupling protein (UCP) gene expression in mice [35].

Secondly, the increased mastication necessary for fiber-

rich foods increases saliva and gastric acid production,

which increases gastric distention. Additionally, fiber-rich

foods generally contain a large volume of water, which

also increases gastric distention. Activation of stretch

receptors in the stomach through gastric distension

contributes to satiety and satiation [36,37]. However,

tolerance development to gastric distension has been

reported [37].

Food ingestion causes gastrointestinal responses. Gas-

trointestinal satiety peptides such as cholecystokinin,

glucagon-like peptide 1 and peptide YY have been shown

to reduce food intake not only in animals but also in man

[38]. Cholecystokinin has been the most extensively studied

gastrointestinal satiety peptide. Cholecystokinin is secreted

from cells in the small intestine upon ingestion of food and

plays a role in the stimulation of pancreatic secretion,

regulation of gastric emptying and central inducement of

satiety [39]. Evidence points to an important role of

cholecystokinin within the brain to regulate hunger and

satiety [38]. The presence of nutrients in the lumen of the

duodenum causes the release of cholecystokinin. It has been

shown that fiber enrichment of a meal augmented the release

of cholecystokinin in women [40]. Most important, the

increase in cholecystokinin concentrations was associated

with greater feelings of satiety in comparison to the low-

fiber-diet control group.

The consumption of legumes, either alone or as part of a

mixed dish, is characteristic of the Mediterranean diet.

Bourdon et al. [41] analyzed the gastrointestinal response

to ingestion of a high-fiber test meal, with beans as the

source of dietary fiber (11.8 g fiber content). The

cholecystokinin response to the bean-rich meal was twice

as high as compared with the response to the low-fiber

control meal. This may partly be due to the delayed gastric

emptying, which prolonged the period of cholecystokinin

response. Furthermore, it has been shown that trypsin

inhibitor, a common component of most legumes, stim-

ulates the secretion of cholecystokinin [42,43]. These

additional effects may be responsible for the significant

increase of cholecystokinin release after consuming the

test meal.

Although the consumption of nut as an energy-dense

food has not been associated with weight gain in epidemi-

ological studies [44], most experimental nut feeding studies

reported no association of weight gain with nut consumption

despite an increase in energy intake [45]. One proposed

mechanism that might explain this fact is the energy

expenditure of unsaturated fat. Furthermore, the high

content of dietary fiber and proteins of nuts explains their

high satiety rating.
3.1.2. Dietary fat

High intake of olive oil is considered a hallmark of the

traditional Mediterranean diet. In the olive-growing areas of

the Mediterranean regions, olive oil is omnipresent in the

diet. It is used for cooking and is added to legumes, salads

and vegetable dishes. An increasing body of evidence

indicates the health benefits of olive oil consumption [46].

However, besides its generally healthy effects, concerns

regarding the potentially adverse effects of olive oil

consumption, including weight gain, have been raised.

Indeed, vegetable oils, such as olive oil, are the most

energy-dense foods. However, epidemiological evidence

shows that olive oil consumption was not associated with

increased weight gain after 2 years of follow-up in a Spanish

cohort [21]. Furthermore, replacing dietary saturated fat

with predominantly monounsaturated fat resulted in signif-

icant total weight and fat mass loss after 4 weeks of

treatment in overweight or obese men [47]. The metabolic

fate of dietary fat is oxidation or storage. Hence, the

capacity to oxidize fat is important for energy balance. The

degree of fat oxidation varies according to the type of fat.

Human studies have shown that polyunsaturated fatty acids

are better oxidized than saturated fatty acids [48]. Rodriguez

et al. [49] have shown that administration of olive oil up-

regulates UCP genes in adipose tissue and muscle of rats.

Recent data from a double-masked intervention trial

revealed that increases in dietary palmitic acid decreased

fat oxidation and daily energy expenditure, whereas oleic

acid had the opposite effect [50]. Furthermore, administra-

tion of olive oil promoted postprandial fat oxidation and

diet-induced thermogenesis in abdominally obese women

[51]. This may provide a physiological explanation of why

olive oil consumption is less prone to promote weight gain.

Moreover, one must take into account the context of olive

oil consumption in the Mediterranean diet. High consump-

tion of olive oil is closely related to the consumption of

vegetables and legumes. Adding olive oil to salads or

cooked vegetables and legumes increases not only the

energy content of these dishes but also their palatability. The

energy content of a typical Mediterranean raw salad

consisting of tomato and lettuce (200 g tomato and 40 g

lettuce) increases from 40 to 150 kcal through the addition

of one tablespoon of olive oil. However, the total energy

content of this dish can be considered low when compared

with the energy content of one doughnut (100 kcal).

3.1.3. Energy density

The energy density of foods, defined in terms of

available dietary energy per weight (energy content/weight

of food or kJ/g), is a key determinant of energy intake.

Several intervention studies have shown that energy density

influences short-term energy intake [52–54]. Energy density

of the total diet differs considerably among populations

[55]. The average energy density of the diet of the free-

living population of the Mediterranean basin is remarkably

lower (5.23 kJ/g for men; 4.63 kJ/g for women) than that
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reported for the United States (7.98 kJ/g for men; 7.48 kJ/g

for women) [23,56].

Strict adherence to the Mediterranean diet has also been

associated with high fiber intake, high diet volume (water

content) and low energy density. A first course composed of

cooked vegetables, legumes or fresh raw salads has a

relatively high content of dietary fiber and is low in energy

density. Furthermore, because it contains a considerable

amount of water, it possesses a high volume. Evidence

indicates that short-term food intake is affected more by the

weight or volume of food that is consumed than by the

energy content of the food [53,57,58].

In a recently published study, Rolls et al. [59] investi-

gated the effects of first-course salads on satiety and total

meal energy intake. The first-course salads differed in

portion size and energy density. Subjects were required to

consume the entire first course but ate as much pasta as they

wanted in a second dish. They found that the salad volume

(portion size) was the major determinant of ratings of

fullness and hunger and, consequently, of the intake of

the subsequent dish (pasta). Furthermore, the energy density

of the first course did not affect the consumption of pasta,

but it was the main factor that determined total energy

intake. Eating a high volume of a low energy-dense salad as

a first course reduced total energy intake by 12% in

comparison with having no first course. These results might

be partially explained by the physiological mechanisms

described above.

3.1.4. Alcohol consumption

The relationship between alcohol consumption and

weight changes is very complex [60]. Therefore, it is not

surprising that evidence from epidemiological and interven-

tion studies is inconclusive [60]. Moderate alcohol consump-

tion, particularly of red wine, is one of the characteristics of

the traditional Mediterranean diet. Vadstrup et al. [61]

observed that moderate wine consumption was not associated

with higher waist circumferences after 10 years in men and

women. Furthermore, recent data showed that voluntary red

wine consumption prevented weight gain in rats fed a high-

fat diet. This effect was mediated through a decrease in

energy intake [62]. The question of whether a specific

component of red wine affects mechanisms of satiety has not

yet been answered.
4. Mechanisms inversely linking the Mediterranean diet

to type 2 diabetes

4.1. Preventing obesity

The development of type 2 diabetes seems to be a product

of the interaction between genetic susceptibility and

environmental factors [63,64]. In genetically susceptible

persons, excessive body weight commonly accompanies the

development of type 2 diabetes. Indeed, several large

epidemiological studies have shown that excessive body
weight, particularly abdominal fat deposition, is an impor-

tant risk factor for type 2 diabetes [65–67]. Recently, Wang

et al. [68] showed that high waist circumference (an indirect

measure for abdominal fat deposition) is a better predictor of

type 2 diabetes than BMI (an indirect measure for general

obesity). Results of the Health Professionals Follow-Up

Study showed that a 1-kg increase in body weight was

associated with a 7.3% increase in the risk of type 2 diabetes

[67]. Excessive fat and carbohydrate intake increases energy

consumption and postprandial oxidative stress. The increase

in energy consumption may lead to an increase in abdominal

body fat accumulation. This type of body fat, in turn, is

linked to the progression of insulin resistance, which is, apart

from h cell dysfunction, one of the two fundamental abnor-

malities involved in the pathogenesis of type 2 diabetes. Up

to now, there has been no definite proof in humans of a

causal link between abdominal obesity and insulin resis-

tance. However, several plausible mechanisms could explain

such a link. The adipose tissue is now recognized to be a

highly active metabolic and endocrine organ [69]. Quanti-

tatively, the most important secretion is fatty acids. The

increased release of nonesterified fatty acids (NEFA) inhibits

insulin-stimulated glucose metabolism in skeletal muscle

and stimulates gluconeogenesis in the liver. Furthermore, the

adipose tissue secretes a large number of proteins called

adipokines [70]. Several of these adipokines adversely affect

the insulin-signaling cascade. Tumor necrosis factor a

(TNFa) enhances adipocyte lipolysis, with a subsequent

increase of NEFA. Furthermore, TNFa exerts direct adverse

effects on insulin-signaling pathways [71,72].

In contrast to the elevated levels of NEFA and TNFa in

abdominal obesity, concentrations of adiponectin, an adi-

pose-specific protein, are decreased in obese subjects [73].

This fact is of particular importance because there is

evidence that adiponectin improves insulin sensitivity and

exerts anti-inflammatory protective effects [73]. Recently,

Yang et al. showed that the expression of GLUT4, the

transmenbrane transporter of glucose, is down-regulated by

retinol binding protein-4 (RBP4) [74]. Furthermore, serum

levels or RBP4 is elevated in humans with obesity and type

2 diabetes, and RBP4 mRNA was selectively increased in

adipose tissue [74]. Excessive energy consumption, includ-

ing high intakes of fat and carbohydrates, increases

postprandial glycemia and lipidemia. Recent data have

suggested that beta cell dysfunction is a result of prolonged

exposure to elevated glucose and NEFA. Postprandial

hyperglycemia induces oxidative stress [75], which, in turn,

damages the beta cells, which are sensitive to reactive

oxygen species (ROS) [76,77].

The mechanistic links between obesity, particularly

abdominal obesity, and insulin resistance suggest a causal

relationship of weight gain and pathogenesis of type 2

diabetes. Diets preventing weight gain, such as the Medi-

terranean diet, exert a protective effect on the development

of type 2 diabetes, which is partially mediated through

weight maintenance.
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4.2. Antioxidant-rich foods

Results from epidemiological studies indicate that a high

consumption of fruits and vegetables, either alone or as

components of a healthy dietary pattern, reduced the risk of

type 2 diabetes [16,17,78–82]. Adherence to the Mediter-

ranean diet is associated with a high consumption of

antioxidant-rich foods such as vegetables and fruits [23].

Furthermore, in a Greek cohort, a high antioxidant capacity

was found among those who closely adhered to the

Mediterranean diet [83]. Recently, Sanchez-Moreno et al.

[84] reported that the consumption of gazpacho, a typical

Mediterranean dish, reduced F2-isoprostanes, a marker of

oxidative stress, and increased plasma vitamin C in healthy

subjects. These data indicate that the Mediterranean diet

protects individuals from oxidative stress, defined as the

persistent imbalance between the production of highly

reactive molecular species (ROS and/or reactive nitrogen

species) and antioxidant defense. This fact is of special

interest because prolonged increased oxidative stress seems

to play a crucial role in the development of insulin

resistance and beta cell dysfunction [85,86]. Excessive

caloric intake leads to a substrate-induced increase in citric

acid cycle activity, which, in turn, generates an excess of

mitochondrial NADH and ROS [87–89]. The prevention of

the entry of energetic substrates into the mitochondria could

be a self-defense mechanism of the cell, which prevents an

increase in the formation of mitochondrial NADH. In fact, if

the excess NADH is not dissipated, then free radical

production increases, resulting particularly to the formation

of superoxide anions [88,89]. Insulin resistance might be

considered as a compensatory state that protects the cell

against further insulin-stimulated glucose and FFA uptake

and subsequent oxidative damage. Indeed, there is evidence

supporting this hypothesis. In cell culture models, induction

of oxidative stress inhibits insulin-stimulated glucose uptake

[90,91], and in results of animal studies, antioxidants

improved insulin sensitivity. Furthermore, clinical trials

have demonstrated that administration of vitamin antiox-

idants improved insulin sensitivity [92,93]. Results from

cross-sectional studies showed that dietary intake of

carotenoids and plasma carotenoid concentrations were

inversely associated with fasting plasma glucose and insulin

resistance [94–97]. Furthermore, low plasma concentrations

of vitamin E were found to increase the risk of type 2

diabetes in a prospective cohort [98]. Recently published

data from a randomized intervention trial showed that

following a Mediterranean-style diet rich in antioxidant-

containing foods significantly decreases insulin resistance in

patients with the metabolic syndrome, as compared with the

normal diet control group [25]. In this sense, it is important

to note that the short-term administration of virgin olive oil

decreases several markers of oxidative stress [99]. These

data from cellular culture models, animal studies, clinical

intervention trials and epidemiological studies strongly

suggest the central role that oxidative stress plays in the
pathogenesis of type 2 diabetes, as well as the role that

dietary antioxidants play in protecting individuals from

this disease.

4.3. Polyphenol-rich foods

Polyphenolic compounds are widely found in character-

istic foods of the Mediterranean diet, such as fruits,

vegetables, cereals, legumes and wine [100]. The two main

types of polyphenols are flavonoids and phenolic acids

[101]. Flavonoids exert a wide range of biological effects,

such as the modulation of enzymatic activity, inhibition of

cellular proliferation or antioxidant and anti-inflammatory

properties [102,103]. Epidemiological evidence suggests a

protective effect of fruits and vegetables, rich sources of

polyphenolic compounds, on the development of type 2

diabetes [17,80,81,104]. Recently, however, Song et al. did

not find a reduced risk of several flavonoids and type 2

diabetes in a large cohort of women after 8.8 years of

follow-up [105]. Results of animal studies indicate a

glycemia-lowering effect of polyphenols. This effect seems

to be mediated through the inhibition of alpha-glucosidase

in the gut mucosa [106]. Administration of quercetin

inhibited glucose absorption in rats [109]. Furthermore, in

a cell culture model, quercetin inhibited glucose transport by

GLUT2 [107]. Evidence from culture cell studies suggests

that polyphenols may increase glucose uptake by peripheral

tissues [108,109]. However, due to the fact that the

administered dosage of polyphenols in the abovementioned

studies was superior to that found normally, it is unknown

whether these results could be reproduced in humans.

4.4. Magnesium-rich foods

Magnesium is an essential cofactor of high-energy

phosphate-bound enzymatic pathways [110]. Insufficient

magnesium intake leading to hypomagnesemia has been

associated with several disorders including type 2 diabetes

[111,112]. Various characteristic components of the Medi-

terranean diet, such as vegetables, legumes and nuts, are rich

sources of magnesium; therefore, high adherence to the

Mediterranean diet is associated with a high consumption of

magnesium. Evidence from epidemiological studies shows a

reduced risk of type 2 diabetes with high intakes of

magnesium [111,113–115]. These data indicate an important

role of magnesium status in the pathogenesis of type 2

diabetes. However, the underlying molecular mechanism(s)

by which magnesium intake influences insulin resistance is

poorly understood. It has been hypothesized that maintain-

ing intracellular magnesium homeostasis is crucial for

adequate cellular responsiveness to insulin [116]. Magne-

sium is part of the activated MgATP complex that is

required for all ATP- and phosphate-transfer-associated

enzymes. Reduced intracellular magnesium concentrations

lead to a decrease in the activity of these enzymes, which, in

turn, might favor insulin resistance. It has been shown that

insulin resistance in magnesium-deficient rats might be

partially attributed to a decrease of tyrosine kinase activity
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of insulin receptors [117]. At the extracellular level,

magnesium moderates intracellular calcium uptake through

its nonspecific antagonistic effects on calcium channels

[118,119]. This fact is of importance because an increased

intracellular concentration of calcium impaired insulin

signaling through the reduced ability of insulin to activate

phosphoserine phosphatase 1 [120].

4.5. Moderate alcohol consumption

Recently published data of meta-analysis of epidemio-

logical studies suggest a protective effect of moderate

alcohol consumption on the pathogenesis of type 2 diabetes

[121–123]. In comparison with nonalcohol consumers,

moderate alcohol drinking was associated with a 30% risk
Fig. 1. Proposed mechanisms that link the M
reduction of type 2 diabetes in both genders [121,122]. This

risk reduction was not seen for elevated alcohol consump-

tion [121–123]. Taking into account that estimating alcohol

consumption in epidemiological studies is complex and

problematic, results should be interpreted with caution.

However, from a mechanistic point of view, the protective

effect of moderate alcohol consumption on type 2 diabetes

can be explained through the enhancing effect of moderate

alcohol drinking on insulin sensitivity observed in epide-

miological studies [124–126]. Sierksma et al. [127] reported

an increase in insulin sensitivity accompanied by an

increase in plasma adiponectin levels, but without changes

in plasma TNFa, in healthy men after moderate alcohol

consumption (40 g/day) for 17 days.
editerranean diet with weight control.



Fig. 2. Proposed mechanisms that link the Mediterranean diet with the prevention of type 2 diabetes.
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One might question whether plasma concentration of

TNFa represents activity at the tissue level. Furthermore,

there are other mechanistic explanations for the protective

effects of adiponectin on insulin resistance. Animal studies

have suggested that adiponectin reduces NEFA [128,129].

Recent research has demonstrated that adiponectin

decreases the hepatic fat content in mice with fatty liver

disease. This effect was partially mediated through an

increase in hepatic fatty acid oxidation and a decrease in

hepatic fatty acid synthesis [130]. Furthermore, Yamauchi et

al. [131] showed that adiponectin stimulates glucose

utilization and fatty acid oxidation through activation of

the 5V-AMP-activated protein kinase. Recently published

data on an intervention study showed that the daily

administration of 360 ml of red wine for 14 days

significantly increased insulin sensitivity in type 2 diabetic

patients [132]. It is of interest to note that this effect was not

mediated by or linked to endothelial dysfunction as reported

by other authors [133,134].

Despite all the evidence for the existence of a link

between moderate alcohol consumption and increased

plasma levels of adiponectin, the mechanisms at work have

not been established.

4.6. Carbohydrate and dietary fiber

A high consumption of cereals and their products is one

characteristic of the traditional Mediterranean diet. To date,

there are no published data on the type of cereals (refined or

whole) consumed during the late 1950s in Mediterranean

regions. It seems very likely that the consumption of whole

grains during this time was notably higher than today.
However, in the absence of published data, no definitive

conclusion concerning this issue can be drawn. An

increasing consumption of carbohydrates can be expected

with increasing adherence to this dietary pattern [23]. In

epidemiological studies, an intake of total carbohydrates did

not predict the risk of type 2 diabetes [135]. Carbohydrate-

rich foods can be characterized, apart from their fiber

content, on the basis of their effects on postprandial

glycemia. This effect can be expressed as glycemic index

(GI) [136]. Postprandial blood glucose response can also be

influenced by the amount of carbohydrates ingested. The

glycemic load (GL) of a food, a concept developed in

epidemiological studies to better represent the quality and

quantity of carbohydrates consumed, is defined as the

amount of carbohydrate contained in an average portion of a

food multiplied by the GI value of the food [136]. Data from

observational studies showed inconsistent results between

risk of type 2 diabetes and GI or GL [137–141]. Indeed,

there is controversy concerning the usefulness of the

concepts of GI and GL in the prevention of type 2 diabetes

[142–144]. Recently, Alfenas and Mattes [145] reported no

significant difference in the response of plasma glucose and

insulin to the consumption of low- and high-GI meals.

Furthermore, data from the Inter99 study, an intervention

study with the aim of reducing cardiovascular diseases

through healthy choices in diet, physical activity and

smoking, showed no association of habitual intake of diets

that are low and high in both GI and GL with the risk of

having insulin resistance. In contrast, dietary fiber was

inversely associated with this risk [146]. Insulin resistance,

which is not synonymous with type 2 diabetes mellitus, is a
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key step in the pathogenesis of this disease. There is

consistent epidemiological evidence to support a protective

effect of dietary fiber, in particular cereal fiber, on insulin

sensitivity and the risk of type 2 diabetes [137–139,146,147].

Several mechanisms may link dietary fiber with the risk of

type 2 diabetes. The insulin-sensitizing effects of dietary

cereal fiber may be mediated through magnesium, a nutrient

found in the outer husk of whole grains (see Section 4.4).

Furthermore, the beneficial effect of dietary fiber on glucose

metabolism may be the result of a delayed gastric emptying

rate and slowed digestion and absorption, which, in turn,

slows the rate of glucose absorption and reduces plasma

insulin levels [148,149]. An additional mechanistic hypoth-

esis for dietary fiber’s capability to protect individuals from

type 2 diabetes, as discussed in Section 3.1, is that it helps

maintain an appropriate and stable weight. This in turn exerts

favorable effects on insulin sensitivity.

4.7. Foods rich in unsaturated fat

Early epidemiological evidence suggested a deleterious

effect of total fat consumption on the development of

diabetes [150]. More recent large cohort studies that take

into account the fat type consumed have shown an increased

risk of the development of type 2 diabetes with high intakes

of saturated fat. In contrast, an inverse association was

reported for unsaturated fat [151–153]. Although total fat

intake did not seem to directly increase the risk of type 2

diabetes, an indirect influence of high fat intake that

promotes weight gain should be considered [153,154]. A

high intake of monounsaturated fatty acids, predominantly

from olive oil, is a key characteristic of the traditional

Mediterranean diet. There is some evidence that oleic acid,

the predominant fatty acid of olive oil, is associated with

lower insulin resistance [155,156]. However, contradictory

results have also been reported [157,158].

Furthermore, the mechanisms linking the type of

dietary fat with insulin resistance are not completely

understood. Cell membrane lipid composition is influ-

enced by fatty acid composition of dietary fat. The

specific fatty acid profile in cell membranes might affect

insulin action in a number of ways, such as insulin

receptor binding and the ability to influence ion perme-

ability and cell signaling.

4.8. Conclusion

Several mechanistic links (Figs. 1 and 2) offer potential

explanations of the Mediterranean diet’s protective effect on

obesity and type 2 diabetes. High consumption of vegeta-

bles, fruits, legumes, nuts, fish, cereals and olive oil,

together with moderate consumption of alcohol, predomi-

nantly wine, leads to high ingestion of dietary fiber,

antioxidants, magnesium and unsaturated fatty acids.

Additionally, this diet is characterized by a low degree of

energy density overall, which might be particularly impor-

tant for the prevention of weight gain. Intervention studies

on energy density and appetite control tend to be conducted
under short-term laboratory conditions. A number of

researchers have suggested potential mechanisms by which

isolated components of the Mediterranean diet can prevent

weight gain, insulin resistance and beta cell dysfunction

(i.e., some nutrients such as dietary fiber, calcium and

magnesium influence metabolic pathways or signaling

mechanisms). However, a bbig pictureQ approach to food

intake and its effect on the development or prevention of

obesity and diabetes may be more predictive of disease risk.

It is important for individuals to understand the protective

effects of healthy foods, particularly on obesity and type 2

diabetes, within the context of a healthy overall diet.
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